博客
关于我
第七届蓝桥杯(软件类)省赛C++B组真题题解
阅读量:218 次
发布时间:2019-02-28

本文共 922 字,大约阅读时间需要 3 分钟。

煤球数目

有一堆煤球,堆成三角棱锥形。具体:第一层放1个,第二层3个(排列成三角形),第三层6个(排列成三角形),第四层10个(排列成三角形),……如果一共有100层,共有多少个煤球?


解题思路

每一层的煤球数目形成一个数列,该数列的通项公式为 ( a_i = i(i+1)/2 )。要计算100层的总煤球数目,我们需要对该数列求和。

将数列拆分为 ( a_i = i^2 + i ),因此总和为:[S = \sum_{i=1}^{100} a_i = \sum_{i=1}^{100} \frac{i^2 + i}{2} = \frac{1}{2} \left( \sum_{i=1}^{100} i^2 + \sum_{i=1}^{100} i \right)]

利用已知的求和公式:[\sum_{i=1}^n i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}]

代入 ( n = 100 ):[\sum_{i=1}^{100} i = \frac{100 \times 101}{2} = 5050][\sum_{i=1}^{100} i^2 = \frac{100 \times 101 \times 201}{6} = 338350]

因此:[S = \frac{338350 + 5050}{2} = \frac{343400}{2} = 171700]


代码

#include 
using namespace std;typedef long long ll;const int INF = 0x3f3f3f3f;const int maxn = 1e5 + 5;const int mod = 1e9 + 7;void solve() { int temp = 0, ans = 0; for (int i = 1; i <= 100; ++i) { temp += i; ans += temp; } cout << ans << endl;}

答案

171700

转载地址:http://vcsn.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>